Selective resonance suppression 1H-[13C] NMR spectroscopy with asymmetric adiabatic RF pulses.
نویسندگان
چکیده
Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse. The results demonstrate the efficient suppression of 1H resonances bound to C3 of Glu and Gln, and C4 of Glu, which allows the 1H resonances bound to C6 of NAA and C4 of Gln to be revealed. The measured time course of the resolved labeling into NAA C6 with the new scheme was consistent with the slow turnover of NAA.
منابع مشابه
C-edited H NMR Spectroscopy with Selective Resonance Suppression Using Asymmetric Adiabatic RF Pulses
Introduction The detection of C label incorporation in conjunction with C label administration is a powerful tool to explore cerebral metabolism. In contrast to direct detection by C NMR, indirect detection can offer higher sensitivity albeit at lower spectral resolution. For instance, the observation of C label incorporation into the C6 of NAA at 2.01ppm is easily obscured by the intensive lab...
متن کاملSolid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy.
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal throug...
متن کاملIn vivo 1H NMR spectroscopy of rat brain at 1 ms echo time.
Using optimized, asymmetric radiofrequency (RF) pulses for slice selection, the authors demonstrate that stimulated echo acquisition mode (STEAM) localization with ultra-short echo time (1 ms) is possible. Water suppression was designed to minimize sensitivity to B1 inhomogeneity using a combination of 7 variable power RF pulses with optimized relaxation delays (VAPOR). Residual water signal wa...
متن کاملSolid-state NMR spectroscopy and first-principles calculations: a powerful combination of tools for the investigation of polymorphism of indomethacin.
Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of i...
متن کاملHigh Field In vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Undersampling
In vivo13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo13C-MRS, alkanyl carbons are detected in the spectra range of 10-6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 61 2 شماره
صفحات -
تاریخ انتشار 2009